Featured Product
This Week in Quality Digest Live
Metrology Features
Aaron Heinrich
An optimal process requires an innovative control algorithm
Harish Jose
Using OC curves to generate reliability/confidence values
Scott Knoche
Choosing the best, most appropriate add-ons makes your work faster and easier
Adam Zewe
Key component for portable mass spectrometers
Peter Büscher
Identify contaminated areas and take steps to optimize them

More Features

Metrology News
Reliable, remote visual inspections and diagnostics in hard-to-reach areas
Ideal for dusty manufacturing environments, explosive atmospheres
Optimized for cured tire runout and bulge measurement
With coupling capacitor approach that eliminates the need for an external sensor
Improving quality control of PCBAs and optimizing X-ray inspection
10-year technology partnership includes sponsorship of quality control lab
MM series features improved functionality and usability
Features improved accuracy, resolution, versatility, and efficiency

More News



Prototype NIST Method Detects and Measures Elusive Hazards

Prototype method is more sensitive than conventional techniques.

Published: Wednesday, September 9, 2009 - 15:27

(NIST: Gaithersburg, MD) -- A chemist at the National Institute of Standards and Technology (NIST) has demonstrated a relatively simple, inexpensive method for detecting and measuring elusive hazards such as concealed explosives and toxins, invisible spoilage in food, or pesticides distributed in soil by wind and rain.

The prototype method is more sensitive than conventional techniques for detecting traces of these materials, which are polar—like water molecules, having distinct electrically positive and negative ends—and don't readily evaporate.

As described in a new paper by NIST researcher, Tom Bruno, published in the August 2009 issue of Journal of Chromatographic Science titled “Simple, Quantitative Headspace Analysis by Cryoadsorption on a Short Alumina PLOT Column,” Bruno enhanced a technique called “headspace analysis,” which is the detection and analysis of trace levels of chemical compounds from a solid or liquid that are released into the surrounding atmosphere.

Bruno’s enhancements greatly improve the efficiency of sample collection, for the first time making the technique suitable for detecting low concentrations of polar, low-volatility, compounds such as explosives. Preliminary results indicate the method is sensitive enough to measure amounts of target materials that constitute as little as 0.0000002 percent of a sample.

NIST research chemist Tom Bruno and postdoctoral researcher Tara Lovestead assemble an apparatus for detecting and measuring explosives and toxins. The sample is inside the blue column (lower center). Bruno enhanced the technique, called headspace analysis, to make it suitable for detecting low concentrations of polar, low-volatility compounds.

Credit: Burrus/NIST

The sample collection device consists of several coils of fine tubing just 0.32 mm in inner diameter. Bruno modified the inner coating, which efficiently attracts and retains chemicals across its large surface area. The device can be used with a sample-heating oven as part of a laboratory analysis system or taken into the field for sample collection. To extract target molecules from a sample, the coil is placed inside an insulated cylinder and chilled with a cold air stream to -40°C. A gas, such as helium, is swept across the sample held in the oven or the coil device, gathering up target molecules along the way and through the fine tubing. Chilling the coils—part of Bruno’s innovative technique—makes collection of target molecules more efficient. The tubing is washed with a solvent, or heated, to release the captured molecules for analysis.

Bruno found that the mass of the collected molecules increases with rising oven and sweep gas temperatures, offering a way to detect specific target molecules under particular field conditions.

NIST researchers demonstrated the new method using several explosives, including the pure explosive TNT and the plastic explosive mixture C-4. Among other applications, NIST researchers have used the method to improve sampling and analysis of fire retardants in a car interior, a topic of interest because of concerns expressed by some that the “new car smell” may be a health hazard. They also are using the method to detect volatile protein decomposition products in spoiled meats. Environmental applications could include detection of pesticides deposited on soils subject to weathering effects.

The work is supported by the U.S. Department of Homeland Security.


About The Author

NIST’s picture


Founded in 1901, the National Institute of Standards and Technology (NIST) is a nonregulatory federal agency within the U.S. Department of Commerce. Headquartered in Gaithersburg, Maryland, NIST’s mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.