Our PROMISE: Our ads will never cover up content.
Our children thank you.
NIST
Published: Tuesday, July 7, 2009 - 12:22
(NIST: Gaithersburg, MD) -- Miniature devices for trapping ions (electrically charged atoms) are common components in atomic clocks and quantum computing research. Now, a novel ion trap geometry demonstrated at the National Institute of Standards and Technology (NIST) could usher in a new generation of applications, because the device holds promise as a stylus for sensing very small forces or as an interface for efficient transfer of individual light particles for quantum communications.
The NIST "stylus trap" can hold a single ion above any of the three sets of concentric cylinders on the centerline. The device could be used as a stylus with a single atom "tip" for sensing very small forces or an interface for efficient transfer of individual light particles for quantum communications.
The “stylus trap,” built by physicists from NIST and Germany’s University of Erlangen-Nuremberg, is described in Nature Physics.* It uses fairly standard techniques to cool ions with laser light and trap them with electromagnetic fields. But whereas in conventional ion traps, the ions are surrounded by the trapping electrodes, in the stylus-trap a single ion is captured above the tip of a set of steel electrodes, forming a point-like probe. The open trap geometry allows unprecedented access to the trapped ion, and the electrodes can be maneuvered close to surfaces. The researchers theoretically modeled and then built several different versions of the trap and characterized them using single magnesium ions.
The new trap, if used to measure forces with the ion as a stylus probe tip, is about one million times more sensitive than an atomic force microscope using a cantilever as a sensor because the ion is lighter in mass and reacts more strongly to small forces. In addition, ions offer combined sensitivity to both electric and magnetic fields or other force fields, producing a more versatile sensor than, for example, neutral atoms or quantum dots. By either scanning the ion trap near a surface or moving a sample near the trap, a user could map out the near-surface electric and magnetic fields. The ion is extremely sensitive to electric fields oscillating at between approximately 100 kilohertz and 10 megahertz.
The new trap also might be placed in the focus of a parabolic mirror so that light beams could be focused directly on the ion. Under the right conditions, single photons, particles of light, could be transferred between an optical fiber and the single ion with close to 95 percent efficiency. Efficient atom-fiber interfaces are crucial in long-distance quantum key cryptography (QKD), the best method known for protecting the privacy of a communications channel. In quantum computing research, fluorescent light emitted by ions could be collected with similar efficiency as a read-out signal. The new trap also could be used to compare heating rates of different electrode surfaces, a rapid approach to investigating a long-standing problem in the design of ion-trap quantum computers.
Research on the stylus trap was supported by the Intelligence Advanced Research Projects Activity.
Quality Digest does not charge readers for its content. We believe that industry news is important for you to do your job, and Quality Digest supports businesses of all types. However, someone has to pay for this content. And that’s where advertising comes in. Most people consider ads a nuisance, but they do serve a useful function besides allowing media companies to stay afloat. They keep you aware of new products and services relevant to your industry. All ads in Quality Digest apply directly to products and services that most of our readers need. You won’t see automobile or health supplement ads. So please consider turning off your ad blocker for our site. Thanks, Founded in 1901, the National Institute of Standards and Technology (NIST) is a nonregulatory federal agency within the U.S. Department of Commerce. Headquartered in Gaithersburg, Maryland, NIST’s mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.NIST Develops Novel Ion Trap for Sensing Force and Light
Holds promise as a stylus for sensing very small forces.
Credit: Maiwald, NIST
View hi-resolution image
* R. Maiwald, D. Leibfried, J. Britton, J.C. Bergquist, G. Leuchs, and D.J. Wineland. 2009. Stylus ion trap for enhanced access and sensing. Nature Physics, published online June 28.
Our PROMISE: Quality Digest only displays static ads that never overlay or cover up content. They never get in your way. They are there for you to read, or not.
Quality Digest Discuss
About The Author
NIST
© 2023 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute, Inc.