PROMISE: Our kitties will never sit on top of content. Please turn off your ad blocker for our site.
puuuuuuurrrrrrrrrrrr
NIST
Published: Tuesday, November 29, 2011 - 14:26 A team of university researchers, aided by scientists at the National Institute of Standards and Technology (NIST), have succeeded in integrating a new, highly efficient piezoelectric material into a silicon microelectromechanical system (MEMS). This development could lead to significant advances in sensing, imaging, and energy harvesting. A piezoelectric material, such as quartz, expands slightly when fed electricity and conversely, generates an electric charge when squeezed. Quartz watches take advantage of this property to keep time: electricity from the watch’s battery causes a piece of quartz to expand and contract inside a small chamber at a specific frequency that circuitry in the watch translates into time. Piezoelectric materials are also in sensors in sonar and ultrasound systems, which use the same principle in reverse to translate sound waves into images of, among other things, fish under the water and fetuses in utero. Although conventional piezoelectric materials work fairly well for many applications, researchers have long sought to find or invent new ones that expand more forcefully and produce stronger electrical signals. More reactive materials would make for better sensors and could enable new technologies such as “energy harvesting,” which would transform the energy of walking and other mechanical motions into electrical power.
A large team led by scientists from the University of Wisconsin-Madison developed a way to incorporate PMN-PT, a crystalline alloy of lead, magnesium niobate, and lead titanate, into tiny, diving-board like cantilevers on a silicon base, a typical material for MEMS construction, and demonstrated that PMN-PT could deliver two to four times more movement with stronger force—while using only 3 volts—than most rival materials studied to date. It also generates a similarly strong electric charge when compressed, which is good news for those in the sensing and energy-harvesting businesses. To confirm that the experimental observations were due to the piezoelectric’s performance, NIST researcher Vladimir Aksyuk developed engineering models of the cantilevers to estimate how much they would bend and at what voltage. Aksyuk also made other performance measures in comparison to silicon systems that achieve similar effects using electrostatic attraction. “Silicon is good for these systems, but it is passive and can only move if heated or using electrostatics, which requires high voltage or large dissipated power,” says Aksyuk. “Our work shows definitively that the addition of PMN-PT to MEMS designed for sensing or as energy harvesters will provide a tremendous boost to their sensitivity and efficiency. A much bigger ‘bend for your buck,’ I guess you could say.” Other participants included researchers from Pennsylvania State University; the University of California, Berkeley; the University of Michigan; Cornell University; and Argonne National Laboratory. Quality Digest does not charge readers for its content. We believe that industry news is important for you to do your job, and Quality Digest supports businesses of all types. However, someone has to pay for this content. And that’s where advertising comes in. Most people consider ads a nuisance, but they do serve a useful function besides allowing media companies to stay afloat. They keep you aware of new products and services relevant to your industry. All ads in Quality Digest apply directly to products and services that most of our readers need. You won’t see automobile or health supplement ads. So please consider turning off your ad blocker for our site. Thanks, Founded in 1901, the National Institute of Standards and Technology (NIST) is a nonregulatory federal agency within the U.S. Department of Commerce. Headquartered in Gaithersburg, Maryland, NIST’s mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.Tiny Levers, Big Moves in Piezoelectric Sensors
New material could enable technologies such as ‘energy harvesting’
Enter a material named PMN-PT
Our PROMISE: Quality Digest only displays static ads that never overlay or cover up content. They never get in your way. They are there for you to read, or not.
Quality Digest Discuss
About The Author
NIST
© 2023 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute, Inc.