Featured Product
This Week in Quality Digest Live
Innovation Features
Judah Levine
How the UTC time scale was defined
Jo Napolitano
Scientists developed a device that can sort information similarly to how the human brain does
Knowledge at Wharton
A hybrid workforce will be much more difficult to manage
Eryn Brown
Their prospects for surviving the pandemic may seem dim, but there are some encouraging signs, experts say
John Toon
Detailed 3D data could help improve reliability and performance

More Features

Innovation News
True 3D holographic displays are practical with only moderate computational requirements
Inspect nozzle welds using phased array ultrasound testing techniques including ray-tracing, scanner simulation, coverage maps
Produce large parts up to 300 × 300 × 450 mm without residual stress, gas cross flow, or having to pre-sinter powder bed
Interfacial launches highly filled, proprietary polymer masterbatches
‘Completely new diagnostic platform’ could prove to be a valuable clinical tool for detecting exposure to multiple viruses
Precitech ships Nanoform X diamond turning lathe to Keene State College
Galileo’s Telescope describes how to measure success at the top of the organization, translate down to every level of supervision

More News

New Electronics

Innovation

Single-Atom Memory Possible, Say Researchers

Quantum nanoscience takes quantum leap by controlling individual atoms

Published: Tuesday, March 28, 2017 - 12:00

(New Electronics: Hawley Mill, England) -- One bit of digital information can now be successfully stored in an individual atom, according to a study published by the Center for Quantum Nanoscience, within the Korean Institute of Basic Science and the U.S. IBM Almaden Research Center. This breakthrough could lead to the miniaturization of storage media and could serve as a basis for quantum computing.

According to the scientists, current commercially-available magnetic memory devices require 1 million atoms.

“We have opened up new possibilities for quantum nanoscience by controlling individual atoms precisely,” says Andreas Heinrich, director of the Institute of Basic Science. “This research may spur innovation in commercial storage media that will expand the possibilities of miniaturizing data storage.”

In this study, researchers worked with a scanning tunneling microscope, which has a tip that enables the user to view and move individual atoms, as well as to apply a pulse of electrical current.

They used this electric pulse to change the direction of magnetization of individual holmium atoms. By doing that, the team could write a memory of either 1 or zero and swap the two.

A quantum sensor designed by the team, consisting of an iron atom, was used to read the memory stored in the holmium atom. Using this technique, as well as tunnel magneto-resistance, the researchers saw that holmium maintains the same magnetic state stably over several hours.

Placing holmium atoms even 1 nanometer apart did not impact their ability to store information individually. This was unexpected as it was thought the magnetic field from one atom would impact its neighbor.

In this way, the scientists could build a two-bit device with four possible types of memory: 1–1, 0–0, 1–0, and 0–1.

“There are no quantum mechanical effects between atoms of holmium,” explains Heinrich. “Now we want to know why.”

Discuss

About The Author

New Electronics’s picture

New Electronics

Established more than 40 years ago, New Electronics is the electronics industry’s leading magazine and a central hub for design engineers. With its blend of technology features, news, and new product information, New Electronics keeps designers and managers up to date with the fastest moving industry in the world.