Featured Product
This Week in Quality Digest Live
Innovation Features
Austin Choi-Fitzpatrick
From Standing Rock to Syria, drones are holding the powerful to account. Let’s keep it that way.
Innovating Service With Chip Bell
Is there a method you’ve missed?
Judah Levine
How the UTC time scale was defined
Jo Napolitano
Scientists developed a device that can sort information similarly to how the human brain does
Knowledge at Wharton
A hybrid workforce will be much more difficult to manage

More Features

Innovation News
True 3D holographic displays are practical with only moderate computational requirements
Inspect nozzle welds using phased array ultrasound testing techniques including ray-tracing, scanner simulation, coverage maps
Produce large parts up to 300 × 300 × 450 mm without residual stress, gas cross flow, or having to pre-sinter powder bed
Interfacial launches highly filled, proprietary polymer masterbatches
‘Completely new diagnostic platform’ could prove to be a valuable clinical tool for detecting exposure to multiple viruses
Precitech ships Nanoform X diamond turning lathe to Keene State College
Galileo’s Telescope describes how to measure success at the top of the organization, translate down to every level of supervision

More News

John Toon

Innovation

X-ray Tomography Lets Researchers Watch Solid-State Batteries Charge, Discharge

Detailed 3D data could help improve reliability and performance

Published: Thursday, April 8, 2021 - 12:02

Using X-ray tomography, a research team has observed the internal evolution of the materials inside solid-state lithium batteries as they were charged and discharged. Detailed 3D information from the research could help improve the reliability and performance of the batteries, which use solid materials to replace the flammable liquid electrolytes in existing lithium-ion batteries.

The operando synchrotron X-ray computed microtomography imaging revealed how the dynamic changes of electrode materials at lithium/solid-electrolyte interfaces determine the behavior of solid-state batteries. The researchers found that battery operation caused voids to form at the interface, which created a loss of contact that was the primary cause of failure in the cells.

“This work provides fundamental understanding of what is happening inside the battery, and that information should be important for guiding engineering efforts that will push these batteries closer to commercial reality in the next several years,” says Matthew McDowell, an assistant professor in the George W. Woodruff School of Mechanical Engineering and the School of Materials Science and Engineering at Georgia Institute of Technology. “We were able to understand exactly how and where voids form at the interface, and then relate that to battery performance.”

The research, supported by the National Science Foundation, a Sloan Research Fellowship, and the Air Force Office of Scientific Research, was reported Jan. 28, 2021, in the journal Nature Materials.

The lithium-ion batteries now in widespread use for everything from mobile electronics to electric vehicles rely on a liquid electrolyte to carry ions back and forth between electrodes within the battery during charge and discharge cycles. The liquid uniformly coats the electrodes, allowing free movement of the ions.

Rapidly evolving solid-state battery technology instead uses a solid electrolyte, which should help boost energy density and improve the safety of future batteries. But removal of lithium from electrodes can create voids at interfaces that cause reliability issues, limiting how long the batteries can operate.

“To counter this, you could imagine creating structured interfaces through different deposition processes to try to maintain contact through the cycling process,” McDowell says. “Careful control and engineering of these interface structures will be very important for future solid-state battery development, and what we learned here could help us design interfaces.”

The Georgia Tech research team, led by first author and graduate student Jack Lewis, built special test cells about 2 mm wide. They were designed to be studied at the Advanced Photon Source, a synchrotron facility at Argonne National Laboratory, a U.S. Department of Energy Office of Science facility located near Chicago. Four members of the team studied the changes in battery structure during a five-day period of intensive experiments.

“The instrument takes images from different directions, and you reconstruct them using computer algorithms to provide 3D images of the batteries over time,” McDowell says. “We did this imaging while we were charging and discharging the batteries to visualize how things were changing inside the batteries as they operated.”


A 3D view of the lithium/solid-electrolyte interface within the battery reconstructed with X-ray tomography. (Credit: Matthew McDowell)

Because lithium is so light, imaging it with X-rays can be challenging and required a special design of the test battery cells. The technology used at Argonne is similar to what is used for medical computed tomography (CT) scans. “Instead of imaging people, we were imaging batteries,” he says.

Because of limitations in the testing, the researchers were only able to observe the structure of the batteries through a single cycle. In future work, McDowell would like to see what happens over additional cycles, and whether the structure somehow adapts to the creation and filling of voids. The researchers believe the results would likely apply to other electrolyte formulations, and that the characterization technique could be used to obtain information about other battery processes.

Battery packs for electric vehicles must withstand at least a thousand cycles during a projected 150,000-mile lifetime. Although solid-state batteries with lithium metal electrodes can offer more energy for a given size battery, that advantage won’t overcome existing technology unless they can provide comparable lifetimes.

“We are very excited about the technological prospects for solid-state batteries,” McDowell said. “There is substantial commercial and scientific interest in this area, and information from this study should help advance this technology toward broad commercial applications.”

First published Jan. 28, 2021, on Georgia Tech’s News Center.

Discuss

About The Author

John Toon’s picture

John Toon

John Toon is manager of the Research News and Publications office and editor of Research Horizons magazine of the Georgia Institute of Technology. He oversees research, economic development, and technology transfer communications for Georgia Tech and its Enterprise Innovation Institute.