Featured Product
This Week in Quality Digest Live
Innovation Features
Klaus Wertenbroch
As algorithms increasingly become gatekeepers, where should rejected customers turn for an explanation?
Robert Sanders
New initiative plans to scale up bioengineering to create polymers, materials, films, and other products
Anju Dave Vaish
Consumers have unleashed their creativity during lockdown. Some clever brands have noticed.
Eric Whitley
Purple deploys lean execution system to improve maintenance and production metrics
Judith Su
Light is key to ultrasensitive chemical sensors

More Features

Innovation News
NSF-funded project is developing a model to help manufacturers pivot and produce personal protective equipment
Despite being far from campus because of the pandemic, some students are engineering a creative way to stay connected
What continual improvement, change, and innovation are, and how they apply to performance improvement
Good quality is adding an average of 11 percent to organizations’ revenue growth
Start with higher-value niche markets; don’t cross the valley of death
Program to provide tools to improve school performance and enrollment
Liquid-entrenched smooth surface (LESS) coating repels bacteria that stink and infect
Leader in workplace productivity introduces document automation product
Help drive team productivity with customizable preprinted templates

More News

Innovation

The Future of Connected Devices

The decentralized nature of Industry 4.0 warrants careful consideration of how data are collected and used

Published: Thursday, November 12, 2020 - 11:02

With the increasing power of digital technology, the idea of a connected manufacturing system that can sense, analyze, and respond will soon be a reality. This idea—called “intelligent edge”—combines computing power, data analytics, and advanced connectivity to allow responses to be made much closer to where the data are captured. It takes emerging internet of things (IoT) and Industry 4.0 capabilities to the next level.

Cybersecurity plays a complex role in this vision. On one hand, technological advances can lead to improved cybersecurity capabilities. On the other hand, when built without a consideration for privacy, data integrity, or network resilience, such technological advances can instead increase cyber risks dramatically.

The capabilities that enable the intelligent edge include artificial intelligence (AI), computing hardware, networking capabilities, and standard protocols. Advances in these capabilities have converged to help tie together components that accelerate the realization of Industry 4.0. Here are the key components that enable new ways of working, new products and services, and new value creation.

AI is here. AI already powers a broad array of applications. Cloud-based AI coupled with real-time data processing allows AI to handle high-demand tasks. For example, AI can respond autonomously to process inefficiencies, quality defects, and suspected cyber attacks at the edge, with ongoing learning conducted at the core.

Hardware is shrinking. Computing hardware and firmware are becoming smaller, more rugged, and more energy-efficient, while increases in processing power enable virtualization, automation, and other features customized for a user’s operations and goals. On the edge, data can be captured, encrypted, integrated, processed, and stored with ever-increasing speed, responsiveness, and security.

Wireless tech has innovated. The growth in adoption and deployment of both 5G wireless and Wi-Fi 6 can help drive the secure deployment of increasingly complex systems of connected devices. These advances in wireless technologies can address several current network limitations with:
• More flexible and scalable deployments
• Improved reliability, data capacity, data speeds, latency, and density of devices
• Support for WPA3 encryption and key management
• Precise location-sensing of connected devices
• Lower power consumption ratios (and in turn, reduced size requirements for connected devices)

Standards have improved. One of the key concepts that allowed early computer networks to become the internet we now depend on was the adoption of a universal communication protocol that allows networks and devices to communicate regardless of their specific construction. Improved standards and protocols will likewise spur on the growth of the IoT, and in particular industrial IoT. These standards and protocols include:
IO-Link (IEC 61131-9), which defines standard cabling, connectors, and a communications protocol for smart sensors and actuators. IO-Link also allows for access to additional information about sensor health and condition.
OPC UA, an extension of the OPC interoperability standard that has been used since the mid-1990s for data exchange between operational technology devices. The newer Unified Architecture provides platform-independent communication between devices with added encryption and authentication security while providing future-proof expandability.
MQTT, a bidirectional messaging protocol developed to allow for device-to-cloud and cloud-to-device communications. This protocol allows for minimal processor sizes and optimized networks, building in the reliability, security, and scalability required for IoT networks.
Lightweight cryptography, which comprise emerging standard cryptographic algorithms that can be used to encrypt communication in constrained environments such as with IoT.

In light of these and other emerging and advancing technologies, the imagination seems to be the only limit to the breadth and scale of applications for connected devices. Here are a few examples that are poised to take advantage of breakthroughs:
Autonomous driving: At the heart of this visionary goal for the automotive industry is the concept of vehicle-to-everything (V2X) connectivity. This will leverage universal protocols for communication, advanced real-time processing, and high-speed data consumption, with a concerted focus on protecting data integrity and privacy.
Wireless sensing and location tracking: Tracking of shipping containers, packages, fleets of vehicles, delivery drones, or any other asset can be done in real time to provide efficiency data as well as prevent thefts, counterfeits, and other security risks.
Networked reality: Expanding on the concepts of augmented, virtual, and extended reality (AR/VR/XR), connected devices can enable such things as remote maintenance of machines by an off-site technician, visual threat monitoring, and immersive training simulations for new employees.
Monitoring and control of critical infrastructure: Intelligent edge computing will enable the broader deployment of smart monitoring devices on critical infrastructure such as roads, railways, power lines, smart grids, buildings, bridges, and utilities. Smart systems that detect faults, threats, cyber attacks, or potential failures can pinpoint vulnerabilities and initiate corrective measures in a predictive and proactive manner.
Smart factories: Smaller, smarter, and wireless devices can be deployed on a larger scale in factories and supply chains to provide secure, real-time status of operations on the floor and in the field. Predictive methods, model-based design, and digital twin architectures will allow for real-time identification and monitoring of any process or security weaknesses.

As we look to the future of edge computing, connected devices, and IoT, cybersecurity plays a crucial and integral role. Each technology and each application can succeed or fail based on how cybersecurity is built into the framework. This is sometimes referred to as the trustworthy network of things (TNoT). The goal of the TNoT effort led by NIST in collaboration with industry is to “protect IoT devices from the internet, and to protect the internet from IoT devices” by improving the security and robustness of large-scale IoT deployments.

The decentralized nature of the future—including remote connected devices, intelligent edge gateways, remote servers, and distributed users—warrants careful planning and consideration of how data are collected, handled, and used. This includes principles of developing a trusted ecosystem of technology partners, security of devices, and protocols, as well as maintaining the integrity and accuracy of data. It also will involve a significant uptick in cybersecurity awareness, education, and training to ensure the secure deployment, use, monitoring, and maintenance of these new technologies.

If you need help with your manufacturing company’s data strategy, have cybersecurity questions, or would like to learn more about how connected devices may be in your company’s future, connect with your local MEP center today.

First published Oct. 27, 2020, on NIST’s Manufacturing Innovation Blog.

Discuss

About The Authors

Erik Fogelman’s picture

Erik Fogelman

Erik Fogelman is a senior technology solutions consultant with CONNSTEP, where he provides a broad technical and market understanding of automation and Industry 4.0 products and applications.

Jeff Orszak’s picture

Jeff Orszak

Jeff Orszak is the director of strategic growth and technology at CONNSTEP. He leads a team helping Connecticut companies with top-line growth, This includes using market development and applying technology acceleration as well as adapting risk management solutions of their information.