Featured Product
This Week in Quality Digest Live
Innovation Features
Aaron Heinrich
An optimal process requires an innovative control algorithm
Jeanne Quimby
Kids can be the source of new ideas
Matt Fieldman
Vocational programs and apprenticeships show the way
Jacob Bourne
Combining computers, robotics, and automation drives efficiency and innovation
Gleb Tsipursky
Here’s the true path to junior staff success

More Features

Innovation News
Sensors can be customized to meet unique operating and configuration specifications
High-performance standard and custom silicon and InGaAs photodetectors
Introducing solutions to improve production performance
High-performance model extends vision capability
Shutterless version of compact thermal camera core
10-year technology partnership includes sponsorship of quality control lab
Research commissioned by the Aerospace & Defense PLM Action Group with Eurostep and leading PLM providers
MM series features improved functionality and usability

More News

David Chandler

Innovation

A Better Way to Separate Gases

A new membrane material could make gas purification more efficient, potentially helping to reduce carbon emissions

Published: Tuesday, April 19, 2022 - 12:03

Industrial processes for chemical separations, including natural gas purification and the production of oxygen and nitrogen for medical or industrial uses, are collectively responsible for about 15 percent of the world’s energy use. They also contribute a corresponding amount to the world’s greenhouse gas emissions. Now, researchers at MIT and Stanford University have developed a new kind of membrane for carrying out these separation processes with roughly 1/10 the energy use and emissions.

Using membranes for separation of chemicals is known to be much more efficient than processes such as distillation or absorption, but there has always been a tradeoff between permeability—i.e., how fast gases can penetrate through the material—and selectivity—the ability to let the desired molecules pass through while blocking all others. The new family of membrane materials, based on “hydrocarbon ladder” polymers, overcomes that tradeoff, providing both high permeability and extremely good selectivity, the researchers say.

The findings are reported by the journal Science, in a paper by Yan Xia, an associate professor of chemistry at Stanford; Zachary Smith, an assistant professor of chemical engineering at MIT; Ingo Pinnau, a professor at King Abdullah University of Science and Technology; and five others.

Gas separation is an important and widespread industrial process with uses that include removing impurities and undesired compounds from natural gas or biogas, separating oxygen and nitrogen from air for medical and industrial purposes, separating carbon dioxide from other gases for carbon capture, and producing hydrogen for use as a carbon-free transportation fuel. The new ladder polymer membranes show promise for drastically improving the performance of such separation processes.

For example, separating carbon dioxide from methane, these new membranes have five times the selectivity and 100 times the permeability of existing cellulosic membranes for that purpose. Similarly, they are 100 times more permeable and three times as selective for separating hydrogen gas from methane.

The new type of polymers, developed during the last several years by the Xia lab, are referred to as ladder polymers because they are formed from double strands connected by rung-like bonds. The links provide a high degree of rigidity and stability to the polymer material. These ladder polymers are synthesized via an efficient and selective chemistry the Xia lab developed called CANAL, an acronym for catalytic arene-norbornene annulation, which stitches readily available chemicals into ladder structures with hundreds or even thousands of rungs.

The polymers are synthesized in a solution, where they form rigid and kinked, ribbon-like strands that can easily be made into a thin sheet with subnanometer-scale pores by using industrially available polymer casting processes. The sizes of the resulting pores can be tuned through the choice of the specific hydrocarbon-starting compounds. “This chemistry and choice of chemical building blocks allowed us to make very rigid ladder polymers with different configurations,” Xia says.

To apply the CANAL polymers as selective membranes, the collaboration made use of Xia’s expertise in polymers and Smith’s specialization in membrane research. Holden Lai, a former Stanford doctoral student, carried out much of the development and exploration of how their structures affect gas permeation properties. “It took us eight years from developing the new chemistry to finding the right polymer structures that bestow the high separation performance,” Xia says.

The Xia lab spent the past several years varying the structures of CANAL polymers to understand how their structures affect their separation performance. Surprisingly, they found that adding additional kinks to their original CANAL polymers significantly improved the mechanical robustness of their membranes and boosted their selectivity for molecules of similar sizes, such as oxygen and nitrogen gases, without losing permeability of the more permeable gas. The selectivity actually improves as the material ages. The combination of high selectivity and high permeability makes these materials outperform all other polymer materials in many gas separations, the researchers say.


A new membrane material, pictured here, could make purification of gases significantly more efficient, potentially helping to reduce carbon emissions. Credits: Courtesy of the researchers

Today, 15 percent of global energy use goes into chemical separations, and these separation processes are “often based on century-old technologies,” Smith says. “They work well, but they have an enormous carbon footprint and consume massive amounts of energy. The key challenge today is trying to replace these nonsustainable processes.” Most of these processes require high temperatures for boiling and reboiling solutions, and these often are the hardest processes to electrify, he adds.

For the separation of oxygen and nitrogen from air, the two molecules differ in size by only about 0.18 angstroms (ten-billionths of a meter), he says. To make a filter capable of separating them efficiently “is incredibly difficult to do without decreasing throughput.” But the new ladder polymers, when manufactured into membranes, produce tiny pores that achieve high selectivity, he says. In some cases, 10 oxygen molecules permeate for every nitrogen molecule, despite the razor-thin sieve needed for this type of size selectivity. These new membrane materials have “the highest combination of permeability and selectivity of all known polymeric materials for many applications,” Smith says.

“Because CANAL polymers are strong and ductile, and because they are soluble in certain solvents, they could be scaled for industrial deployment within a few years,” Smith says. An MIT spinoff company called Osmoses, led by authors of this study, recently won the MIT $100K entrepreneurship competition and has been partly funded by The Engine to commercialize the technology.

There are a variety of potential applications for these materials in the chemical processing industry, Smith says, including the separation of carbon dioxide from other gas mixtures as a form of emissions reduction. Another possibility is the purification of biogas fuel made from agricultural waste products to provide carbon-free transportation fuel. Hydrogen separation for producing a fuel or a chemical feedstock could also be carried out efficiently, helping with the transition to a hydrogen-based economy.

The close-knit team of researchers is continuing to refine the process to facilitate development from laboratory to industrial scale, and to better understand the details of how the macromolecular structures and packing result in the ultrahigh selectivity. Smith says he expects this platform technology to play a role in multiple decarbonization pathways, starting with hydrogen separation and carbon capture, because there is such a pressing need for these technologies in order to transition to a carbon-free economy.

“These are impressive new structures that have outstanding gas separation performance,” says Ryan Lively, an associate professor of chemical and biomolecular engineering at Georgia Tech (he was not involved in this work). “Importantly, this performance is improved during membrane aging and when the membranes are challenged with concentrated gas mixtures.... If they can scale these materials and fabricate membrane modules, there is significant potential practical impact.”

The research team also included Jun Myun Ahn and Ashley Robinson at Stanford, Francesco Benedetti at MIT (now the chief executive officer at Osmoses), and Yingge Wang at King Abdullah University of Science and Technology in Saudi Arabia. The work was supported by the Stanford Natural Gas Initiative, the Sloan Research Fellowship, the U.S. Department of Energy Office of Basic Energy Sciences, and the National Science Foundation.

First published March 24, 2022, on MIT News; reprinted with permission of MIT News.

Discuss

About The Author

David Chandler’s picture

David Chandler

David L. Chandler writes about energy, engineering, and materials science for the MIT News Office.

Comments

A Better Way to Separate Gases

Can these membranes separate CO2 emissions so they can be captured before released into the environment?