Featured Product
This Week in Quality Digest Live
Innovation Features
William A. Levinson
A ‘robot tax’ would do nothing more than derail almost limitless growth and a high standard of living
Jason Maderer
How an elephant’s trunk manipulates air to eat and drink
Felipe Monteiro
It’s possible for new ideas to flourish anywhere, but they need a welcoming organizational culture
Matt Fieldman
Through grants and best practices, America Works strives to define it
UC Berkeley NewsCenter
Important confirmation that scale-up will work

More Features

Innovation News
Eiger Fleet to enable more control and automation of distributed manufacturing
The tabletop diagnostic yields results in an hour and can be programmed to detect variants of the SARS-CoV-2 virus
First Responder UAS Triple Challenge focuses on using optical sensors and data analysis to improve image detection and location
More than half of respondents expect to meet Industry 4.0 goals within two years
Both quality professionals and their business leaders agree that openness and communication is essential to moving forward
Voxel8 patented technology will provide printed lattice structures to be used as inserts in midsoles
Purpose-built for cannabis analysis
True 3D holographic displays are practical with only moderate computational requirements
Inspect nozzle welds using phased array ultrasound testing techniques including ray-tracing, scanner simulation, coverage maps

More News

Innovation

Berkeley Lab Optical Innovation Could Calm the Jitters of High-Power Lasers

New system holds the key to unprecedented accuracy in beam control

Published: Wednesday, September 15, 2021 - 12:02

The Berkeley Lab Laser Accelerator (BELLA) Center at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has developed and tested an innovative optical system to precisely measure and control the position and pointing angle of high-power laser beams with unprecedented accuracy—without interrupting or disturbing the beams. The new system will help users throughout the sciences get the most out of high-power lasers.

The experimental validation effort was led by doctoral candidate Fumika Isono of Berkeley Lab and UC Berkeley. Her findings are described in a paper published recently by the Cambridge University Press journal, High Power Laser Science and Engineering.

“This is a tremendous advancement in measurement and control that will benefit high-power laser facilities worldwide,” says Cameron Geddes, director of Berkeley Lab’s Accelerator Technology and Applied Physics (ATAP) Division, of which the BELLA Center is a part.

Measurement without disturbance

People think of a laser as being so precise that it passes into the language as metaphor, but users with demanding applications know that laser beams move around at a tiny scale in response to the vibrations and variability of even the most controlled lab environment.

“Missing the target by as little as a few microns can make the difference between amazing science and an unwanted addition to background noise,” says Isono.

Pointing angle offsets of less than a thousandth of a degree can result in unwanted complexities as well. That’s where diagnostic sensors and feedback systems come into play.

Measuring these parameters both accurately and without intercepting the beam is the trick. Traditional methods either greatly sap the power of the beam by intercepting its pulses (which at any rate is difficult for intense, high-powered beams), or suffer inaccuracies because they are not measuring the beam exactly as delivered. The BELLA Center’s innovative approach involves splitting off and monitoring a low-powered exact copy of the main beam, reflected from the rear surface of a specially designed final optic in the beam line.

The heart of this new approach is a laser architecture with three key attributes. First, it simultaneously provides five high-power pulses and a thousand low-power pulses per second, all following the same path. Second, the beamline design is optimized to keep the high-power and low-power pulses matched in size and divergence. Finally, it replaces one of the reflective beam line mirrors with an innovative wedge-shaped reflector that has specialty coatings on both the front and rear surfaces.

Almost all of the main beam is reflected off the front surface of the optic without otherwise being noticeably affected. A tiny bit of the beam, representing perhaps 1 percent of the input power, propagates through the front surface and is reflected off the rear surface. This “witness beam” goes through any subsequent optics almost in parallel to the main beam, with just enough diversion for easy placement of measurement instruments. The end result is a witness beam with pointing angle and transverse position highly correlated to those of the main beam.

The result, says Isono, is “a measurement that won’t interfere with the main laser beam, yet very accurately tells us about it.”

Benefits for the BELLA Center and beyond

A near-future goal is using this diagnostic as part of a feedback system for active stabilization of the laser’s transverse position and pointing angle. Preliminary studies with the 100-terawatt laser at BELLA Center have been promising. The manuscript lays out the prospect of removing the jitters on the high-power 5 Hz laser by actively stabilizing the low-power 1 kHz laser pulse train. Laser beam vibration and motion was observed to occur on a scale of a few tens of hertz, which is well within the range of a practical feedback system. A fivefold improvement in position and angle of high-power laser pulse delivery is expected.

The development of laser-plasma particle accelerators (LPAs), which is the primary mission of the BELLA Center, exemplifies the potential benefit of this innovation. LPAs produce ultrahigh electric fields that accelerate charged particles very rapidly, thereby offering the promise of a next generation of more compact, more affordable accelerators for a wide variety of applications. Since LPAs perform their acceleration within a thin hollow tube, or “capillary,” they would benefit greatly from improved control of the drive laser beam position and pointing angle.


At the heart of the Berkeley Lab innovation is a wedge-shaped optic with a 99-percent reflective front surface for the main beam, and a wedged rear surface to reflect a low-powered witness beam. Both reflected beams are brought to a focus at nearly the same distance along near-identical paths, so the witness beam undergoes the same motions as the main beam. (Credit: Berkeley Lab)

One immediate application at the BELLA Center is the use of a laser-driven plasma accelerator (LPA) to provide electron beams for a free-electron laser (FEL), a device that produces bright photon pulses at a far higher energy and shorter wavelength than visible light.

“The undulator, the magnetic array at the heart of the FEL, has very strict requirements on electron beam acceptance, which directly relates to the LPA drive laser pointing angle and transverse fluctuations,” says Isono.

The proposed kBELLA, a next-generation laser system that will combine high power with a kilohertz repetition rate, will be another likely application.

Interest from laser labs worldwide is anticipated. “This work is not limited to laser-plasma acceleration,” says BELLA Center director Eric Esarey. “It addresses a specific need throughout the high-power laser community—namely, proving a correlated, low-power copy of the high-power pulse without significant interference. Anywhere a high-power laser beam needs to be delivered with some precision to any application, this diagnostic is going to make a big difference. Think of laser-particle collision experiments, or laser interactions with micron-precision targets such as capillaries or droplets.”

The work was supported by the DOE Office of Science, Office of Basic Energy Sciences, through an Early Career Research Program grant to Jeroen van Tilborg, in addition to the Office of High Energy Physics and the Gordon and Betty Moore Foundation.

First published July 27, 2021, in the Berkeley Lab News Center.

Discuss

About The Authors

Joe Chew’s picture

Joe Chew

Joe Chew is the communications coordinator at the Accelerator Technology and Applied Physics Division of Lawrence Berkeley National Lab.

Jeroen van Tilborg’s picture

Jeroen van Tilborg

Jeroen van Tilborg is the deputy director for experiments in the Berkeley Lab Laser Accelerator (BELLA) Center.